p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.300C23, C4.1742+ 1+4, C4⋊Q8.33C4, C8⋊9D4⋊44C2, C4⋊1D4.20C4, C4⋊D4.28C4, C4⋊C8.236C22, C42.225(C2×C4), (C2×C4).677C24, (C2×C8).438C23, C4.4D4.21C4, (C4×D4).64C22, C8⋊C4.97C22, C42.6C4⋊52C2, C23.44(C22×C4), C2.31(Q8○M4(2)), C22⋊C8.145C22, (C22×C8).450C22, (C2×C42).784C22, C22.201(C23×C4), (C22×C4).944C23, C2.51(C22.11C24), (C2×M4(2)).247C22, C22.26C24.28C2, C4⋊C4.120(C2×C4), (C2×D4).144(C2×C4), C22⋊C4.21(C2×C4), (C2×Q8).126(C2×C4), (C22×C8)⋊C2⋊36C2, (C22×C4).357(C2×C4), (C2×C4).277(C22×C4), (C2×C4○D4).97C22, SmallGroup(128,1712)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.300C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1b2, dad=a-1, ae=ea, bc=cb, bd=db, be=eb, dcd=ece=a2c, ede=b2d >
Subgroups: 332 in 197 conjugacy classes, 124 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4⋊Q8, C22×C8, C2×M4(2), C2×C4○D4, (C22×C8)⋊C2, C42.6C4, C8⋊9D4, C22.26C24, C42.300C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4, 2+ 1+4, C22.11C24, Q8○M4(2), C42.300C23
(1 47 55 33)(2 38 56 44)(3 41 49 35)(4 40 50 46)(5 43 51 37)(6 34 52 48)(7 45 53 39)(8 36 54 42)(9 22 64 26)(10 31 57 19)(11 24 58 28)(12 25 59 21)(13 18 60 30)(14 27 61 23)(15 20 62 32)(16 29 63 17)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 17)(2 30)(3 19)(4 32)(5 21)(6 26)(7 23)(8 28)(9 48)(10 35)(11 42)(12 37)(13 44)(14 39)(15 46)(16 33)(18 56)(20 50)(22 52)(24 54)(25 51)(27 53)(29 55)(31 49)(34 64)(36 58)(38 60)(40 62)(41 57)(43 59)(45 61)(47 63)
(1 19)(2 32)(3 21)(4 26)(5 23)(6 28)(7 17)(8 30)(9 40)(10 47)(11 34)(12 41)(13 36)(14 43)(15 38)(16 45)(18 54)(20 56)(22 50)(24 52)(25 49)(27 51)(29 53)(31 55)(33 57)(35 59)(37 61)(39 63)(42 60)(44 62)(46 64)(48 58)
G:=sub<Sym(64)| (1,47,55,33)(2,38,56,44)(3,41,49,35)(4,40,50,46)(5,43,51,37)(6,34,52,48)(7,45,53,39)(8,36,54,42)(9,22,64,26)(10,31,57,19)(11,24,58,28)(12,25,59,21)(13,18,60,30)(14,27,61,23)(15,20,62,32)(16,29,63,17), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,17)(2,30)(3,19)(4,32)(5,21)(6,26)(7,23)(8,28)(9,48)(10,35)(11,42)(12,37)(13,44)(14,39)(15,46)(16,33)(18,56)(20,50)(22,52)(24,54)(25,51)(27,53)(29,55)(31,49)(34,64)(36,58)(38,60)(40,62)(41,57)(43,59)(45,61)(47,63), (1,19)(2,32)(3,21)(4,26)(5,23)(6,28)(7,17)(8,30)(9,40)(10,47)(11,34)(12,41)(13,36)(14,43)(15,38)(16,45)(18,54)(20,56)(22,50)(24,52)(25,49)(27,51)(29,53)(31,55)(33,57)(35,59)(37,61)(39,63)(42,60)(44,62)(46,64)(48,58)>;
G:=Group( (1,47,55,33)(2,38,56,44)(3,41,49,35)(4,40,50,46)(5,43,51,37)(6,34,52,48)(7,45,53,39)(8,36,54,42)(9,22,64,26)(10,31,57,19)(11,24,58,28)(12,25,59,21)(13,18,60,30)(14,27,61,23)(15,20,62,32)(16,29,63,17), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,17)(2,30)(3,19)(4,32)(5,21)(6,26)(7,23)(8,28)(9,48)(10,35)(11,42)(12,37)(13,44)(14,39)(15,46)(16,33)(18,56)(20,50)(22,52)(24,54)(25,51)(27,53)(29,55)(31,49)(34,64)(36,58)(38,60)(40,62)(41,57)(43,59)(45,61)(47,63), (1,19)(2,32)(3,21)(4,26)(5,23)(6,28)(7,17)(8,30)(9,40)(10,47)(11,34)(12,41)(13,36)(14,43)(15,38)(16,45)(18,54)(20,56)(22,50)(24,52)(25,49)(27,51)(29,53)(31,55)(33,57)(35,59)(37,61)(39,63)(42,60)(44,62)(46,64)(48,58) );
G=PermutationGroup([[(1,47,55,33),(2,38,56,44),(3,41,49,35),(4,40,50,46),(5,43,51,37),(6,34,52,48),(7,45,53,39),(8,36,54,42),(9,22,64,26),(10,31,57,19),(11,24,58,28),(12,25,59,21),(13,18,60,30),(14,27,61,23),(15,20,62,32),(16,29,63,17)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,17),(2,30),(3,19),(4,32),(5,21),(6,26),(7,23),(8,28),(9,48),(10,35),(11,42),(12,37),(13,44),(14,39),(15,46),(16,33),(18,56),(20,50),(22,52),(24,54),(25,51),(27,53),(29,55),(31,49),(34,64),(36,58),(38,60),(40,62),(41,57),(43,59),(45,61),(47,63)], [(1,19),(2,32),(3,21),(4,26),(5,23),(6,28),(7,17),(8,30),(9,40),(10,47),(11,34),(12,41),(13,36),(14,43),(15,38),(16,45),(18,54),(20,56),(22,50),(24,52),(25,49),(27,51),(29,53),(31,55),(33,57),(35,59),(37,61),(39,63),(42,60),(44,62),(46,64),(48,58)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2H | 4A | 4B | 4C | 4D | 4E | ··· | 4M | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | 2+ 1+4 | Q8○M4(2) |
kernel | C42.300C23 | (C22×C8)⋊C2 | C42.6C4 | C8⋊9D4 | C22.26C24 | C4⋊D4 | C4.4D4 | C4⋊1D4 | C4⋊Q8 | C4 | C2 |
# reps | 1 | 4 | 2 | 8 | 1 | 8 | 4 | 2 | 2 | 2 | 4 |
Matrix representation of C42.300C23 ►in GL8(𝔽17)
13 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
4 | 0 | 13 | 4 | 0 | 0 | 0 | 0 |
13 | 13 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 16 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 15 | 15 | 0 | 1 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 5 | 0 | 0 | 0 | 0 | 0 |
7 | 7 | 6 | 6 | 0 | 0 | 0 | 0 |
16 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 11 | 6 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 13 | 4 | 4 |
0 | 0 | 0 | 0 | 8 | 0 | 9 | 13 |
4 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 13 | 13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 16 | 1 | 1 |
0 | 0 | 0 | 0 | 2 | 2 | 0 | 16 |
16 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 16 | 0 | 0 | 0 | 0 |
1 | 1 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 16 | 16 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(17))| [13,4,13,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,9,4,13,4,0,0,0,0,0,0,0,0,16,0,0,15,0,0,0,0,16,0,1,15,0,0,0,0,1,16,0,0,0,0,0,0,1,0,0,1],[13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,7,16,11,0,0,0,0,0,7,0,11,0,0,0,0,5,6,1,6,0,0,0,0,0,6,0,10,0,0,0,0,0,0,0,0,0,4,13,8,0,0,0,0,13,0,13,0,0,0,0,0,0,0,4,9,0,0,0,0,0,0,4,13],[4,13,4,0,0,0,0,0,8,13,4,13,0,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,16,2,0,0,0,0,1,0,16,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,16],[16,0,16,1,0,0,0,0,15,1,16,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,1] >;
C42.300C23 in GAP, Magma, Sage, TeX
C_4^2._{300}C_2^3
% in TeX
G:=Group("C4^2.300C2^3");
// GroupNames label
G:=SmallGroup(128,1712);
// by ID
G=gap.SmallGroup(128,1712);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,219,675,1018,521,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e=a^2*c,e*d*e=b^2*d>;
// generators/relations